Μετάβαση στο κύριο περιεχόμενο

Ένα Σύμπαν από το τίποτε.

Στο Ένα Σύμπαν από το τίποτε αυτό που επιχειρεί ο Lawrence Krauss είναι να αποδείξει πως, στην περίπτωση του Σύμπαντος, η δημιουργία δεν απαιτεί δημιουργό. Να αποδομήσει, δηλαδή, την κυρίαρχη άποψη πως ex nihilo nihil, πως από το μηδέν το μόνο που μπορεί να γεννηθεί είναι το μηδέν.

Η ιδέα πως δεν είναι δυνατό να μην υπάρχει δημιουργός, η ιδέα του Πρώτου Αιτίου (κατά τον Αριστοτέλη) αντιστοιχεί σε μια προφανή ανάγκη και είναι εξαιρετικά ισχυρή.

Κι αυτό παρ’ όλο που η ερώτηση "ποιος δημιούργησε το δημιουργό" είναι καθόλα βάσιμη στο μέτρο που, όπως το θέτει ο Κράους, δεν υπάρχει καμιά διαφορά "ανάμεσα στο να υποστηρίζεις την ύπαρξη ενός αιώνιου δημιουργού και στο να υποστηρίζεις την ύπαρξη ενός αιώνιου Σύμπαντος χωρίς δημιουργό". Ο δημιουργός, επομένως, όχι μόνο δεν αποτελεί κανενός είδους απάντηση στο "μεγάλο ερώτημα", αλλά θα έπρεπε να απορρίπτεται και εξαιτίας του ξυραφιού του Όκαμ, εφόσον η συμπερίληψή του μειώνει την οικονομία της ερμηνείας.

Αυτά, βέβαια, είναι παλιά συζήτηση και τα επιχειρήματα στο φιλοσοφικό πεδίο έχουν αναπτυχθεί εξαντλητικά για χιλιάδες χρόνια. Υπάρχει κάτι καινούργιο, που συνεισφέρει το βιβλίο του Κράους;

Η απάντηση είναι θετική. Στο Ένα Σύμπαν από το Τίποτε μέσα από μια συναρπαστική εξιστόρηση των εξελίξεων στην Μαθηματική Φυσική, την Κβαντική Μηχανική, τη Γενική Σχετικότητα και την Κοσμολογία – και με το σχετικό κόπο – αφομοιώνουμε το δεδομένο πως το μεγαλύτερο μέρος της συμπαντικής ενέργειας βρίσκεται συγκεντρωμένο στο κενό.

Το κενό, όμως, εδώ δεν είναι ο "χώρος ανάμεσα στα πράγματα", αλλά το πρωταρχικό εκείνο "στοιχείο" από το οποίο προέκυψαν τα πάντα και από το οποίο προκύπτουν τα πάντα, εφόσον είναι δυνατά – ή, μήπως, κι όταν ακόμη δεν είναι; Το κενό, λοιπόν, δεν είναι "σχεδόν άδειο". Είναι απολύτως κενό.

Ένα απόλυτο κενό, ό,τι καλύτερο ως αντιπρόσωπος του Τίποτε, πλήρες, ωστόσο, ενέργειας. Πλήρες και κενό ταυτόχρονα. Και, όπως δείχνει η σύγχρονη Φυσική, χωρίς αυτό να συνιστά κανενός είδους αντίφαση. Γιατί δεν πρόκειται για "κάτι" με την έννοια που είναι "κάτι" η συνηθισμένη υλοενέργεια του Σύμπαντος. Η ριζική δε αλλότητα αυτού του "κάτι" που είναι το "τίποτε", το απόλυτο και πρωταρχικό κενό εύκολα γίνεται αντιληπτή αν σημειώσουμε πως η ενεργειακή πυκνότητα αυτού του τίποτε παραμένει σταθερή μ’ όλο που το Σύμπαν διαστέλλεται.

Για σκεφτείτε: "κάτι" που διαστέλλεται χωρίς να αραιώνει! Προφανώς αυτό το "κάτι" είναι εντελώς άλλο από όσα μέχρι τώρα γνωρίζουμε. Στην πραγματικότητα, είναι τίποτε. Όπως χαρακτηριστικά το θέτει το θέτει ο Κράους, "η ενεργειακή πυκνότητα στον κενό χώρο παραμένει σταθερή, επειδή […] στον κενό χώρο δεν υπάρχει το παραμικρό για να αραιωθεί!".

Αυτό το "κάτι", που δεν είναι τίποτε, ακόμη καλύτερα που είναι το ίδιο το τίποτε, είναι "προορισμένο", χωρίς κανένα σχέδιο και χωρίς καμία σκοπιμότητα, να παραγάγει όλα όσα παράχθηκαν και όλα όσα θα παραχθούν. Όσα, πάντως, σήμερα παρατηρούμε παράχθηκαν από μια κβαντική διακύμανση του κενού, απολύτως αστάθμητη κι άσκοπη, που ακολουθήθηκε από μια πληθωριστική διαστολή, στην οποία ο χώρος, που δημιουργήθηκε με τη διακύμανση επεκτάθηκε με υπερφωτεινές ταχύτητες.

(…) ο κενός χώρος είναι πολύπλοκος. Μοιάζει με σούπα δυνάμει σωματιδίων που κοχλάζουν, και τα οποία δημιουργούνται σε χρονικά διαστήματα τόσο σύντομα ώστε δεν μπορούμε να τα δούμε άμεσα. Τα δυνάμει σωματίδια υποδηλώνουν μια βασική ιδιότητα των κβαντικών συστημάτων. Στην καρδιά της κβαντικής μηχανικής βρίσκεται ο κανόνας που λέει, πως όταν δεν υπάρχει παρατηρητής, τα πάντα μπορούν να γίνουν.

Τα συστήματα, δηλαδή, συνεχίζουν να εξελίσσονται, έστω και στιγμιαία, ανάμεσα σε όλες τις δυνατές καταστάσεις, συμπεριλαμβανομένων εκείνων που δεν επιτρέπονταν. Αυτές οι «κβαντικές διακυμάνσεις» αποκαλύπτουν ένα βασικό χαρακτηριστικό του κβαντικού κόσμου: από το τίποτε μπορεί να παραχθεί κάτι.(…)

Ωστόσο αν λάβουμε υπόψη μας τη σύνθεση κβαντικής μηχανικής και γενικής σχετικότητας, μπορούμε να επεκτείνουμε το επιχείρημα για να υποστηρίξουμε την αναγκαστική δημιουργία του ίδιου του χώρου.(…)

Γιατί, αν τίποτε δεν μπορεί να κινηθεί στον χώρο ταχύτερα από το φως, "ο ίδιος ο χώρος μπορεί να κάνει ό,τι θέλει". Και "κάνοντας αυτό που ήθελε", διαστελλόμενος, δηλαδή, κατά ένα παράγοντα μεγαλύτερο από 1028 μέσα σε ένα ελάχιστο κλάσμα του δευτερολέπτου έγινε όσο απίθανα επίπεδος τον βλέπουμε να είναι σήμερα.

Ας προσέξουμε! Η ιδέα πως το Σύμπαν δημιουργήθηκε από το τίποτε έχει γίνει εξαιρετικά ισχυρή, στο μέτρο που "η παραδοχή ότι το Σύμπαν προέκυψε από το τίποτε οδηγεί ακριβώς στην πρόβλεψη ενός επίπεδου σύμπαντος, ενός σύμπαντος όπου όλα τα σώματα έχουν μηδενική ολική νευτώνεια βαρυτική ενέργεια".

Γιατί, "σε ένα επίπεδο και μόνο σε ένα επίπεδο σύμπαν, η ολική μέση νευτώνεια βαρυτική ενέργεια κάθε σώματος που κινείται με τη διαστολή, ισούται ακριβώς με μηδέν!".

Ένα επίπεδο Σύμπαν, το απολύτως απίθανο με γενικούς όρους, αλλά χωρίς αμφιβολία αυτό στο οποίο ζούμε, προβλέπεται επακριβώς εάν και μόνον εάν προϋποθέσουμε πως το Σύμπαν δημιουργήθηκε από το τίποτε. Δεν είναι καταπληκτικό;

Εκτός των άλλων, όμως, τα προηγούμενα οδηγούν και σε μια πρόβλεψη για το μέλλον του σύμπαντος πολύ διαφορετική από αυτήν που μέχρι πρόσφατα είχαμε. Όπως σημειώνει ένα μότο, που αναφέρει κάποια στιγμή ο συγγραφέας: το μέλλον δεν είναι αυτό που ήταν. Σήμερα, λοιπόν, μπορούμε να απαντήσουμε στο πανάρχαιο -ή, τουλάχιστον, τόσο παλιό όσο ο Τ. Σ. Έλιοτ- ερώτημα: Πώς θα τελειώσει το Σύμπαν; Με μια έκρηξη ή με ένα λυγμό;

Με ένα λυγμό θα τελειώσει το Σύμπαν, όπως πολύ πειστικά μας εξηγεί ο Κράους. Πράγμα με μεγάλες επιπτώσεις στον τρόπο που επιτρέπεται να αντιλαμβανόμαστε όλα εκείνα τα ερωτήματα που έχουν να κάνουν με τη θέση μας στον κόσμο και στο χρόνο, και με όλα όσα άπτονται του νοήματος, αυτής της τόσο ανθρωποκεντρικής ιδέας, που θεωρεί δεδομένη τη μεγάλη μας αξία για το ίδιο το σύμπαν. Ιδέα θρησκευτική εν τέλει, ελάχιστα υποστηριζόμενη από τις σημερινές μας γνώσεις για το σύμπαν και τη ζωή.

Όπως σημειώνει καταληκτικά ο Κράους: "Αν ζούμε σε ένα σύμπαν που η ενέργειά του κυριαρχείται από την ενέργεια του τίποτε, το μέλλον διαγράφεται πράγματι ζοφερό […] Σε ό,τι αφορά το μέλλον της ζωής, ένα σύμπαν που κυριαρχείται από την ενέργεια του κενού είναι το χειρότερο απ’ όλα τα σύμπαντα. Είναι βέβαιο ότι σε ένα τέτοιο σύμπαν οποιοσδήποτε πολιτισμός θα εξαφανιστεί, αφού θα εκλείψει η ενέργεια που χρειάζεται για να επιβιώσει. Μετά από μια αδιανόητα μεγάλη περίοδο, κάποια κβαντική διακύμανση ή κάποια θερμική διαταραχή μπορεί να προκαλέσει τη δημιουργία μιας τοπικής περιοχής στην οποία η ζωή θα μπορέσει και πάλι να εξελιχθεί και να ακμάσει. Αλλά κι αυτή θα είναι εφήμερη. Το μέλλον θα κυριαρχείται από ένα σύμπαν το οποίο δεν θα περιέχει τίποτε για να εκτιμήσει το τεράστιο μυστήριό του. Αν, μάλιστα, η ύλη από την οποία απαρτιζόμαστε δημιουργήθηκε όταν ξεκίνησε ο χρόνος μέσω κβαντικών διαδικασιών, […], είναι σχεδόν βέβαιο ότι κι αυτή επίσης θα εξαφανιστεί […] Στο πολύ, πολύ μακρινό μέλλον, τα πρωτόνια και τα νετρόνια θα διασπαστούν και το Σύμπαν θα προσεγγίσει μια κατάσταση μέγιστης απλότητας και συμμετρίας. Μαθηματικά όμορφο, ίσως, αλλά χωρίς ουσία […] [Κι αν, μάλιστα, ισχύουν όσα θεωρητικοί των χορδών ισχυρίζονται], ένα σύμπαν σαν το δικό μας, με θετική ενέργεια στον κενό χώρο, δεν μπορεί να είναι ευσταθές. Τελικά, πρέπει να μεταπέσει σε μια κατάσταση στην οποία η ενέργεια του χώρου θα είναι αρνητική […] [Κι έτσι], το Σύμπαν μας θα εξαφανιστεί τόσο απότομα όσο πιθανότατα ξεκίνησε".




Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) Εξισώσεις κίνησης

Περιοδικά ονομάζονται τα φαινόμενα που επαναλαμβάνονται με τον ίδιο τρόπο σε ίσα χρονικά διαστήματα. Π.χ. ομαλή κυκλική κίνηση, κίνηση εκκρεμούς, περιστροφή γης γύρω από τον ήλιο κ.ά. (Σκέψου μερικά ακόμη …) Στοιχεία περιοδικής κίνησης Κάθε περιοδική κίνηση χαρακτηρίζεται από τα παρακάτω τρία στοιχειά: Περίοδος (Τ) ενός περιοδικού φαινομένου ονομάζεται ο χρόνος που απαιτείται για μια πλήρη επανάληψη του φαινομένου ή ο χρόνος που μεσολαβεί μεταξύ δύο διαδοχικών επαναλήψεων του φαινομένου. Η περίοδος είναι μονόμετρο μέγεθος και η μονάδα μέτρησής της είναι το 1 sec . Συχνότητα (f) ενός περιοδικού φαινομένου ονομάζεται το φυσικό μέγεθος του οποίου το μέτρο θα δίνεται από το σταθερό πηλίκο του αριθμού Ν των επαναλήψεων του φαινομένου σε κάποιο χρόνο t, προς το χρόνο αυτό.Δηλαδή:        Η συχνότητα είναι μονόμετρο μέγεθος και έχει μονάδα μέτρησης το 1 sec -1 ή 1 κύκλος/sec ή 1 Hz (Hertz) . Σχέση μεταξύ περιόδου – συχνό...

Ενέργεια Ταλάντωσης

Η ενέργεια της ταλάντωσης Ε (ή ολική ενέργεια) ενός συστήματος που εκτελεί απλή αρμονική ταλάντωση ισούται με την ενέργεια που προσφέραμε αρχικά στο σύστημα για να το θέσουμε σε κίνηση (ταλάντωση).  Η ενέργεια αυτή θα δίνεται από τη σχέση:  Από την σχέση αυτή προκύπτει ότι το πλάτος Α καθορίζεται από την ενέργεια  της ταλάντωσης, δηλαδή από την ενέργεια που προσφέραμε αρχικά στο σύστημα ώστε  να αρχίσει να ταλαντώνεται. Σε όλη την διάρκεια της ταλάντωσης η ενέργεια παραμένει  σταθερή. Η ενέργεια μιας απλής αρμονικής ταλάντωσης είναι σταθερή και ανάλογη µε το τετράγωνο του πλάτους της. Απόδειξη της παραπάνω σχέσης. Αν το σώμα βρίσκεται ακίνητο στην θέση ισορροπίας, για να μετακινηθεί σε µια άλλη θέση πρέπει να του ασκηθεί κατάλληλη εξωτερική δύναμη F εξ . Κατά την μετακίνηση αυτή θα ασκείται στο σώμα και η δύναμη επαναφοράς.  Για να μετακινηθεί το σώμα στην θέση (x) θα πρέπει το μέτρο της εξωτερικής δύναμης να είναι ίσο ...

Ταλάντωση και Ελατήριο

Ελατήριο ονομάζεται ένα μηχανικό εξάρτημα το οποίο έχει την ικανότητα να αποθηκεύει μηχανική ενέργεια παραμορφώμενο προσωρινά. Συνήθως το σχήμα είναι ελικοειδές, αλλά υπάρχουν και ελατήρια σε σχήμα ράβδου, οι σούστες. Το κάθε ελατήριο μπορεί να παραμορφωθεί ως προς μία διάστασή του υπό την επίδραση δύναμης. Όταν ασκείται δύναμη σε αυτήν τη διάσταση, το ελατήριο παραμορφώνεται αποθηκεύοντας το έργο της δύναμης.   Ιδανικό ελατήριο Σε ιδανικά θεωρητικά ελατήρια ισχύει απόλυτα ο νόμος του Hook , δε χάνεται ενέργεια στο περιβάλλον και τα ελατήρια μπορούν πάντα να επιστρέψουν στο αρχικό τους μήκος. Επίσης η μάζα του ιδανικού ελατηρίου θεωρείται αμελητέα. [Στην πραγματικότητα χάνεται μικρό ποσό ενέργειας στο περιβάλλον ως θερμική ενέργεια, ενώ η παραμόρφωση μπορεί να γίνει μόνιμη. Κάθε ελατήριο έχει κάποια όρια αντοχής αν τα υπερβούν θα παραμορφωθεί ή θα σπάσει. Επιπλέον, με την επαναλαμβανόμενη χρήση το υλικό χάνει τις ιδιότητές του λόγω μηχανικής κόπωσης και αν ...

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) - Συνισταμένη Δύναμη

Από την Α΄ Λυκείου γνωρίζεις τον θεμελιώδη νόμο της Μηχανικής (2 ος νόμος του Newton), ΣF=mα . Επίσης, όπως γνωρίζεις για να υπάρχει επιτάχυνση πρέπει να υπάρχει και δύναμη που ασκείται σε κάποιο σώμα. Στην Α.Α.Τ. ισχύει α=-ω 2 x, ο συνδυασμός αυτών των δυο σχέσεων δίνει τη σχέση:  Σ F=-m ω 2 x     Από τη σχέση αυτή φαίνεται ότι όταν ένα σώμα εκτελεί απλή αρμονική ταλάντωση η συνολική δύναμη που δέχεται είναι ανάλογη με την απομάκρυνση του σώματος από την Θ.Ι. της τροχιάς του και έχει αντίθετη φορά από αυτήν. Όταν το σώμα περνά από την Θ.Ι. η συνολική δύναμη που δέχεται ισούται με μηδέν. (Για το λόγο αυτό, ονομάζεται θέση ισορροπίας της ταλάντωσης). Επίσης, στις ακραίες θέσεις της ταλάντωσης η ΣF είναι μεγίστη. Στο βίντεο δες το διάνυσμα της δύναμης επαναφοράς (είναι πάντα προς την θέση ισορροπίας).      Αν συμβολίσουμε το γινόμενο mω 2 με D (που είναι σταθερό για κάθε ταλαντωτή), δηλαδή D = mω 2 Τότε θ...

Πως αποδεικνύουμε ότι ένα σώμα κάνει απλή αρμόνική ταλάντωση

Το είδες εδώ , τώρα λίγο πιο αναλυτικά. Σε ασκήσεις που έχουμε ένα σώμα συνδεδεμένο με ένα ελατήριο και μας ζητείται να αποδείξουμε ότι σώμα εκτελεί απλή αρμονική ταλάντωση δουλεύουμε πάντα έχοντας στο μυαλό μας ότι αρκεί να αποδείξουμε ότι σε μιά τυχαία θέση της κίνησης του σώματος η συνισταμένη δύναμη που ασκείται σε αυτό μπορεί να γραφεί στη μορφή:  Σ F=-Dx Για το σκοπό αυτό ακολουθούμε τα παρακάτω βήματα: 1. Σχεδιάζουμε το ελατήριο στη θέση φυσικού μήκους (ΘΦΜ). 2. Σχεδιάζουμε το σύστημα ελατήριο - σώμα στη θέση ισορροπίας του (Θ.Ι.) και   σχεδιάζουμε τις δυνάμεις που ασκούνται στο σώμα. (γράφουμε:)  Στη θέση ισορροπίας του συστήματος ισχύει   ΣF=0 Από τη σχέση αυτή για τη συνισταμένη των δυνάμεων στη θέση ισορροπίας προκύπτει μια συνθήκη για τις δυνάμεις που ασκούνται στο σώμα στην κατάσταση ισορροπίας. Δηλαδη:  Σ F =0  ή   mg - F ελ  =0   ή    mg = kx 1  (1) ...

Ταλάντωση και πλαστική κρούση

Θυμήσου την ορμή:  Για ένα σώμα μάζας m που κινείται µε ταχύτητα u η ορμή του p δίνεται από τη σχέση: p=mu Η ορμή p είναι ένα διανυσματικό μέγεθος το ο­ποίο έχει: μέτρο p = m u , διεύθυνση και φορά ίδια µε τη διεύθυνση και τη φορά της ταχύτητας u , μονάδα μέτρησης στο S.I. το 1 kg ∙ m/s (ισοδύναμη μονάδα είναι το 1 Ν∙s). Η ορμή, ως διανυσματικό μέγεθος, έχει όλες τις ιδιότητες των διανυσμάτων. Έτσι: μπορεί ν' αναλυθεί σε άξονες, δηλαδή σε συ­νιστώσες p x και p y, μεταβάλλεται αν μεταβληθεί τουλάχιστον ένα από τα στοιχεία της, δηλαδή το μέτρο της, η διεύθυνσή της ή η φορά της. Ο ρυθμός μεταβολής της ορμής (dp/dt) ισούται με την δύναμη ή τη συνισταμένη των δυνάμεων (ΣF) που ασκούνται στο σώμα. Προσοχή: Όταν στις ασκήσεις πρέπει να υπολογίσεις την μεταβολή της ορμής τότε θα υπολογίζεις την σχέση:    Δp = p τελ – p αρχ Ενώ όταν  ζητείται ο ρυθμό μεταβολής της ορμής θα υπολογίζεις τη σχέση:...

Αρχική Φάση Στην Απλή Αρμονική Ταλάντωση (Α.Α.Τ.) - Μεθοδολογία και Ασκήσεις

Σκοπός: Η ανάπτυξη δεξιοτήτων στις τριγωνομετρικές εξισώσεις σε συνδυασμό με τα βασικά μεγέθη της απλής αρμονικής ταλάντωσης .  Απαιτούμενες γνώσεις: Τριγωνομετρικές Εξισώσεις – Εξισώσεις στην Α.Α.Τ. Βασικές παρατηρήσεις:  1. Η ταλάντωση ενός σώματος δεν έχει αρχική φάση μόνο στην κατάσταση κατά την οποία τη χρονική στιγμή t=0 το σώμα διέρχεται από τη θέση ισορροπίας του έχοντας θετική ταχύτητα. Σε οποιαδήποτε άλλη κατάσταση η ταλάντωση του σώματος έχει αρχική φάση και την υπολογίζουμε μέσω των τριγωνομετρικών εξισώσεων.  2. Η αρχική φάση μιας απλής αρμονικής με βάση το σχολικό βιβλίο παίρνει τιμές:  0≤φο<2π rad. 3. Για να προσδιορίσουμε την αρχική φάση πρέπει να γνωρίζουμε σε κάποια χρονική στιγμή (συνήθως τη στιγμή t=0) την κατάσταση που βρίσκεται ο ταλαντωτής (δηλαδή, τις αλγεβρικές τιμές τουλάχιστον δύο μεγεθών: ταχύτητα, θέση, επιτάχυνση). Απλές ασκήσεις εφαρμογής των παραπάνω. 1. Στις παρακάτω περιπτώσεις να βρεθεί η αρχική φάση της ταλάν...

Κεντρομόλος δύναμη, φυγόκεντρος δύναμη και μπογιά: Τέχνη.

Κεντρομόλος δύναμη: Όταν ένα σώμα εκτελεί κυκλική κίνηση, δηλαδή περιστρέφεται διαγράφοντας κύκλο γύρω από ένα σταθερό σημείο στον χώρο, τότε στο σώμα ασκείται δύναμη η οποία έχει φορά προς το κέντρο του κύκλου αυτού που διαγράφει η τροχιά του. Αυτή η δύναμη ονομάζεται κεντρομόλος. Η κεντρομόλος δύναμη είναι η συνιστώσα της συνολικής δύναμης που ασκείται στο σώμα κατά τη διεύθυνση που ορίζει κάθε στιγμή η θέση του με το κέντρο της κυκλικής τροχιάς του, έχει κατεύθυνση (φορά) προς το κέντρο αυτό και είναι κάθε χρονική στιγμή κάθετη στην ταχύτητα του σώματος. Φυγόκεντρος δύναμη: Η φυγόκεντρος δύναμη είναι φαινόμενη (ψευδής) δύναμη που «αισθάνεται» ένα σώμα το οποίο εκτελεί κυκλική κίνηση, η οποία μοιάζει να το σπρώχνει (ή να το τραβά) να φύγει από την κυκλική του τροχιά, προς τα έξω. Κάθε σώμα που κινείται σε μη επιταχυνόμενο σύστημα αναφοράς τείνει να διατηρήσει την ταχύτητα προς την κατεύθυνση που έχει κάθε στιγμή. Η εξανάγκαση ενός σώματος να κινείται κυκλικά και όχι ευθύγρ...

Θέματα πανελληνίων εξετάσεων: Ταλαντώσεις

Τα θέματα των πανελληνίων μπορείς να τα δεις κι εδώ , αλλά σ’ αυτό το αρχείο θα βρεις όλα τα θέματα από το 2001 ως το 2012 τα οποία αναφέρονται στις ταλαντώσεις, αποκλειστικά,  μηχανικές, ηλεκτρικές. Καλή δουλειά σου εύχομαι. 

Η διαίρεση με το μηδέν και μια απόδειξη ότι ο περιπτεράς της γειτονιάς σας είναι καρότο.

Ένα πρόβλημα στα μαθηματικά είναι οι πράξεις με το μηδέν και ιδιαίτερα η διαίρεση με παρονομαστή το μηδέν. Γύρω από αυτό το πρόβλημα (ή την απροσδιοριστία αν θέλεις) έχουν γραφτεί διάφορα, πολλά από τα οποία ήταν μπούρδες, περί αποδείξεως του θεού κι άλλα τέτοια. Το παρακάτω κείμενο το οποίο το άντλησα από το blog Μαθη...μαγικα σου εξηγεί το εξής: πως μπορείς να αποδείξεις το οτιδήποτε κάνοντας μια λάθος μαθηματική υπόθεση. Για δες:  «Τι είναι το μηδέν, Μπαμπά ;» «Ο αριθμός των φτερωτών ελεφάντων που στέκονται δίπλα σου.» « Οι ροζ ή οι άσπροι;»    Το μηδέν δεν πειθαρχεί σε όλους τους κανόνες των αριθμών.O Ινδός μαθηματικός  Βραχμαγκούπτα παρότι ήταν ο πρώτος που ασχολήθηκε μαζί του ενδελεχώς, ομολογουμένως δεν κατάφερε να χειριστεί την διαίρεση. Την διαίρεσή ενός αριθμού με το μηδέν.Ο μεταγενέστερος του, επίσης Ινδός μαθηματικός Μπασκάρα γνώριζε ότι όσο μικρότερος είναι ο διαιρέτης σε μια διαίρεση τόσο  μεγαλύτερο είναι το πη...