Μετάβαση στο κύριο περιεχόμενο

Αξιολόγηση από τους μαθητές.

Την τελευταία μέρα του 2015 ζήτησα από τους 72 μαθητές μου να συμπληρώσουν ένα ερωτηματολόγιο με σκοπό την αξιολόγηση μου ως εκπαιδευτικός Φυσικής. Οι 58 από αυτούς ανταποκρίθηκαν και βγήκαν συμπεράσματα.

Το ερωτηματολόγιο περιείχε 38 ερωτήσεις και ήταν ανώνυμο, έτσι ώστε οι μαθητές/τριες να απαντούσαν με ειλικρίνεια χωρίς να υπήρχε ο φόβος της αντίδρασης του καθηγητή σε περίπτωση αρνητικών κρίσεων ή η απαίτηση για εύνοια σε περίπτωση θετικών κρίσεων. Ο σκοπός της αξιολόγησης ήταν αποκλειστικά η βελτίωση της εκπαιδευτικής διαδικασίας.



Μεταξύ άλλων απαντησαν: 




















Στην κατηγορία «Άλλο» καταγραφήκανε τα εξής: Σταδιακά ειρωνευτικός, φιλομαθής, συνεπής, αστείος, ευφυής, ευπρόσιτος, έμπιστος, συμπονετικός, κι άλλα τα οποία ανάγονται σε επίπεδο συναισθημάτων οπότε δεν τα παραθέτω. 


Επίσης, υπήρχαν 3 ερωτήσεις σύντομης απάντησης τις οποίες επεξεργάστηκα και αφαίρεσα τις απαντήσεις συναισθηματικών εκδηλώσεων, οπότε μεταξύ άλλων είπαν:

36. (Προαιρετική ερώτηση) Ποιές πλευρές/χαρακτηριστικά του συγκεκριμένου μαθήματος ή/και εκπαιδευτικού συνεισέφεραν περισσότερο στην προαγωγή της γνώσης σας; 
  • Επιμονή, ψυχραιμία.
  • Η αγάπη και το ενδιαφέρον του για το αντικείμενο, η τάση να βοηθήσει κάθε μαθητή ανεξαρτήτως επιπέδου γνώσεων καθώς και η σύνδεση της φυσικής ως επιστήμη με φαινόμενα της καθημερινότητας με βοήθησαν να βελτιωθώ, να αγαπήσω τη φυσική και να την αντιμετωπίσω ως ευχαρίστηση και όχι ως εξαναγκασμό! 
  • Η  ενθάρρυνση και ο τρόπος διδασκαλίας.
  • Η πολύ καλή παρουσίαση των ενοτήτων. 
  • Η αναλυτική επεξήγηση και επιμονή του σε ιδιαίτερα σημεία.
  • Η θετική ενέργειά του και η όρεξη του να μας μάθει, μου κέντρισαν το ενδιαφέρον στο συγκεκριμένο μάθημα.
  • Η μεταδοτικότητα του καθηγητή και ο τρόπος διεξαγωγής του μαθήματος. 
  • Η επιμονή.
  • Η γνώση, η κατάρτιση το ενδιαφέρον  και ουσιαστικά ο εθισμός του εκπαιδευτικού στο μάθημα ήταν αυτό που μου μετέδωσε και με έκανε να αγαπήσω το μάθημα και να ασχολούμαι με αυτό χωρίς να το βλέπω σαν αγκαρία οπως παλιότερα!
  • Παραστατικότητα, εφαρμογές, παραδείγματα, επανάληψη μέσω ασκήσεων και φύλλων έργου.
  • Ο τρόπος με τον οποίο ο εκπαιδευτικός διδάσκει και αναλύει το μάθημα ήταν αποτελεσματικά στην γνώση. Επίσης, ο ίδιος ο εκπαιδευτικός έχει την ικανότητα να κάνει τους μαθητές να στραφούν με ενδιαφέρον προς το συγκεκριμένο μάθημα.
  • Το χιούμορ του και το πόσο δένεται με τους μαθητές του.
  • Το γεγονός οτι τα παρουσιάζει πολυ όμορφα και σου κινει το ενδιαφέρον για να ασχοληθείς.
  • Οργάνωση, απλοποίηση, ηρεμία.
  • Ο τρόπος εκφοράς του λόγου του, η παραστατικότητα και παράδοσης του μαθήματος.

37.  (Προαιρετική ερώτηση) Ποιές ήταν οι κυριότερες αδυναμίες του εκπαιδευτικού;
  • Βάζοντας πολλές ασκήσεις προσπαθώντας να καλύψει όλα τα πιθανά ερωτήματα που μπορούν να ζητηθούν αλλά οι περισσότερες από αυτές επαναλαμβάνονται με σκοπό να μην υπάρχει κάποιο κέρδος και να χάνεται πολύτιμος χρόνος και για τα άλλα μαθήματα.
  • Η υπερβολική σοβαρότητα στην αρχή της χρονιάς.
  • Λίγες εργασίες και κάποιες φορές καθόλου με αποτέλεσμα να χαλαρώνομαι. 

38.  (Προαιρετική ερώτηση) Τι έχετε να προτείνετε για την βελτίωση του συγκεκριμένου μαθήματος ή/και εκπαιδευτικού;
  • Μια συγκέντρωση ασκήσεων , διαφορετικές μεταξύ τους , από την οποία θα παίρνεις κάτι διαφορετικό. Να μην υπάρχουν τα ίδια ερωτήματα. Δηλαδή αν μια άσκηση έχει 5 ερωτήματα δε χρειάζεται η επόμενη να έχει και αυτή 5 και οι 4 πρώτες να είναι ίδιες και να αλλάζει μόνο η πέμπτη. Ετσι αυτές οι ασκήσεις θα αποτελέσουν αντικείμενο για μελέτη και όχι για λύση.
  • Θα ήθελα αν είναι δυνατό να πραγματοποιούνται μαθήματα και μέσα στις γιορτές!!! 
  • Να μην είναι αγχωτικός όταν εξετάζει. 
  • Να σηκώνονται οι μαθητές περισσότερο στον πίνακα διότι πάνε εκεί για να μάθουν και όχι να ακούν μόνο χρειάζεται προσπάθεια και από τα παιδιά και από τον καθηγητή , αμοιβαία σχέση
  • Να αυξηθεί ο αριθμός των εργασιών και να έχει περισσότερες απαιτήσεις για να μας πιέζει περισσότερο
  • Πιο λίγη εργασία για το σπίτι!
  • Ίσως περισσότερες διαδραστικες προβολές για να γίνεται οσο το δυνατόν πιο "χειροπιαστο" το μάθημα γιατί από τη φυση του θέλει αρκετή φαντασία!!
  • Τίποτα ο εκπαιδευτικος έχει χιούμορ, ενδιαφέρεται και για τα προβλήματα που μας απασχολούν περα από το μάθημα του.
  • Να χαμογελάει πιο συχνά για να μας μεταδίδει θετική ενέργεια. 

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) Εξισώσεις κίνησης

Περιοδικά ονομάζονται τα φαινόμενα που επαναλαμβάνονται με τον ίδιο τρόπο σε ίσα χρονικά διαστήματα. Π.χ. ομαλή κυκλική κίνηση, κίνηση εκκρεμούς, περιστροφή γης γύρω από τον ήλιο κ.ά. (Σκέψου μερικά ακόμη …) Στοιχεία περιοδικής κίνησης Κάθε περιοδική κίνηση χαρακτηρίζεται από τα παρακάτω τρία στοιχειά: Περίοδος (Τ) ενός περιοδικού φαινομένου ονομάζεται ο χρόνος που απαιτείται για μια πλήρη επανάληψη του φαινομένου ή ο χρόνος που μεσολαβεί μεταξύ δύο διαδοχικών επαναλήψεων του φαινομένου. Η περίοδος είναι μονόμετρο μέγεθος και η μονάδα μέτρησής της είναι το 1 sec . Συχνότητα (f) ενός περιοδικού φαινομένου ονομάζεται το φυσικό μέγεθος του οποίου το μέτρο θα δίνεται από το σταθερό πηλίκο του αριθμού Ν των επαναλήψεων του φαινομένου σε κάποιο χρόνο t, προς το χρόνο αυτό.Δηλαδή:        Η συχνότητα είναι μονόμετρο μέγεθος και έχει μονάδα μέτρησης το 1 sec -1 ή 1 κύκλος/sec ή 1 Hz (Hertz) . Σχέση μεταξύ περιόδου – συχνό...

Ενέργεια Ταλάντωσης

Η ενέργεια της ταλάντωσης Ε (ή ολική ενέργεια) ενός συστήματος που εκτελεί απλή αρμονική ταλάντωση ισούται με την ενέργεια που προσφέραμε αρχικά στο σύστημα για να το θέσουμε σε κίνηση (ταλάντωση).  Η ενέργεια αυτή θα δίνεται από τη σχέση:  Από την σχέση αυτή προκύπτει ότι το πλάτος Α καθορίζεται από την ενέργεια  της ταλάντωσης, δηλαδή από την ενέργεια που προσφέραμε αρχικά στο σύστημα ώστε  να αρχίσει να ταλαντώνεται. Σε όλη την διάρκεια της ταλάντωσης η ενέργεια παραμένει  σταθερή. Η ενέργεια μιας απλής αρμονικής ταλάντωσης είναι σταθερή και ανάλογη µε το τετράγωνο του πλάτους της. Απόδειξη της παραπάνω σχέσης. Αν το σώμα βρίσκεται ακίνητο στην θέση ισορροπίας, για να μετακινηθεί σε µια άλλη θέση πρέπει να του ασκηθεί κατάλληλη εξωτερική δύναμη F εξ . Κατά την μετακίνηση αυτή θα ασκείται στο σώμα και η δύναμη επαναφοράς.  Για να μετακινηθεί το σώμα στην θέση (x) θα πρέπει το μέτρο της εξωτερικής δύναμης να είναι ίσο ...

Ταλάντωση και Ελατήριο

Ελατήριο ονομάζεται ένα μηχανικό εξάρτημα το οποίο έχει την ικανότητα να αποθηκεύει μηχανική ενέργεια παραμορφώμενο προσωρινά. Συνήθως το σχήμα είναι ελικοειδές, αλλά υπάρχουν και ελατήρια σε σχήμα ράβδου, οι σούστες. Το κάθε ελατήριο μπορεί να παραμορφωθεί ως προς μία διάστασή του υπό την επίδραση δύναμης. Όταν ασκείται δύναμη σε αυτήν τη διάσταση, το ελατήριο παραμορφώνεται αποθηκεύοντας το έργο της δύναμης.   Ιδανικό ελατήριο Σε ιδανικά θεωρητικά ελατήρια ισχύει απόλυτα ο νόμος του Hook , δε χάνεται ενέργεια στο περιβάλλον και τα ελατήρια μπορούν πάντα να επιστρέψουν στο αρχικό τους μήκος. Επίσης η μάζα του ιδανικού ελατηρίου θεωρείται αμελητέα. [Στην πραγματικότητα χάνεται μικρό ποσό ενέργειας στο περιβάλλον ως θερμική ενέργεια, ενώ η παραμόρφωση μπορεί να γίνει μόνιμη. Κάθε ελατήριο έχει κάποια όρια αντοχής αν τα υπερβούν θα παραμορφωθεί ή θα σπάσει. Επιπλέον, με την επαναλαμβανόμενη χρήση το υλικό χάνει τις ιδιότητές του λόγω μηχανικής κόπωσης και αν ...

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) - Συνισταμένη Δύναμη

Από την Α΄ Λυκείου γνωρίζεις τον θεμελιώδη νόμο της Μηχανικής (2 ος νόμος του Newton), ΣF=mα . Επίσης, όπως γνωρίζεις για να υπάρχει επιτάχυνση πρέπει να υπάρχει και δύναμη που ασκείται σε κάποιο σώμα. Στην Α.Α.Τ. ισχύει α=-ω 2 x, ο συνδυασμός αυτών των δυο σχέσεων δίνει τη σχέση:  Σ F=-m ω 2 x     Από τη σχέση αυτή φαίνεται ότι όταν ένα σώμα εκτελεί απλή αρμονική ταλάντωση η συνολική δύναμη που δέχεται είναι ανάλογη με την απομάκρυνση του σώματος από την Θ.Ι. της τροχιάς του και έχει αντίθετη φορά από αυτήν. Όταν το σώμα περνά από την Θ.Ι. η συνολική δύναμη που δέχεται ισούται με μηδέν. (Για το λόγο αυτό, ονομάζεται θέση ισορροπίας της ταλάντωσης). Επίσης, στις ακραίες θέσεις της ταλάντωσης η ΣF είναι μεγίστη. Στο βίντεο δες το διάνυσμα της δύναμης επαναφοράς (είναι πάντα προς την θέση ισορροπίας).      Αν συμβολίσουμε το γινόμενο mω 2 με D (που είναι σταθερό για κάθε ταλαντωτή), δηλαδή D = mω 2 Τότε θ...

Πως αποδεικνύουμε ότι ένα σώμα κάνει απλή αρμόνική ταλάντωση

Το είδες εδώ , τώρα λίγο πιο αναλυτικά. Σε ασκήσεις που έχουμε ένα σώμα συνδεδεμένο με ένα ελατήριο και μας ζητείται να αποδείξουμε ότι σώμα εκτελεί απλή αρμονική ταλάντωση δουλεύουμε πάντα έχοντας στο μυαλό μας ότι αρκεί να αποδείξουμε ότι σε μιά τυχαία θέση της κίνησης του σώματος η συνισταμένη δύναμη που ασκείται σε αυτό μπορεί να γραφεί στη μορφή:  Σ F=-Dx Για το σκοπό αυτό ακολουθούμε τα παρακάτω βήματα: 1. Σχεδιάζουμε το ελατήριο στη θέση φυσικού μήκους (ΘΦΜ). 2. Σχεδιάζουμε το σύστημα ελατήριο - σώμα στη θέση ισορροπίας του (Θ.Ι.) και   σχεδιάζουμε τις δυνάμεις που ασκούνται στο σώμα. (γράφουμε:)  Στη θέση ισορροπίας του συστήματος ισχύει   ΣF=0 Από τη σχέση αυτή για τη συνισταμένη των δυνάμεων στη θέση ισορροπίας προκύπτει μια συνθήκη για τις δυνάμεις που ασκούνται στο σώμα στην κατάσταση ισορροπίας. Δηλαδη:  Σ F =0  ή   mg - F ελ  =0   ή    mg = kx 1  (1) ...

Ταλάντωση και πλαστική κρούση

Θυμήσου την ορμή:  Για ένα σώμα μάζας m που κινείται µε ταχύτητα u η ορμή του p δίνεται από τη σχέση: p=mu Η ορμή p είναι ένα διανυσματικό μέγεθος το ο­ποίο έχει: μέτρο p = m u , διεύθυνση και φορά ίδια µε τη διεύθυνση και τη φορά της ταχύτητας u , μονάδα μέτρησης στο S.I. το 1 kg ∙ m/s (ισοδύναμη μονάδα είναι το 1 Ν∙s). Η ορμή, ως διανυσματικό μέγεθος, έχει όλες τις ιδιότητες των διανυσμάτων. Έτσι: μπορεί ν' αναλυθεί σε άξονες, δηλαδή σε συ­νιστώσες p x και p y, μεταβάλλεται αν μεταβληθεί τουλάχιστον ένα από τα στοιχεία της, δηλαδή το μέτρο της, η διεύθυνσή της ή η φορά της. Ο ρυθμός μεταβολής της ορμής (dp/dt) ισούται με την δύναμη ή τη συνισταμένη των δυνάμεων (ΣF) που ασκούνται στο σώμα. Προσοχή: Όταν στις ασκήσεις πρέπει να υπολογίσεις την μεταβολή της ορμής τότε θα υπολογίζεις την σχέση:    Δp = p τελ – p αρχ Ενώ όταν  ζητείται ο ρυθμό μεταβολής της ορμής θα υπολογίζεις τη σχέση:...

Αρχική Φάση Στην Απλή Αρμονική Ταλάντωση (Α.Α.Τ.) - Μεθοδολογία και Ασκήσεις

Σκοπός: Η ανάπτυξη δεξιοτήτων στις τριγωνομετρικές εξισώσεις σε συνδυασμό με τα βασικά μεγέθη της απλής αρμονικής ταλάντωσης .  Απαιτούμενες γνώσεις: Τριγωνομετρικές Εξισώσεις – Εξισώσεις στην Α.Α.Τ. Βασικές παρατηρήσεις:  1. Η ταλάντωση ενός σώματος δεν έχει αρχική φάση μόνο στην κατάσταση κατά την οποία τη χρονική στιγμή t=0 το σώμα διέρχεται από τη θέση ισορροπίας του έχοντας θετική ταχύτητα. Σε οποιαδήποτε άλλη κατάσταση η ταλάντωση του σώματος έχει αρχική φάση και την υπολογίζουμε μέσω των τριγωνομετρικών εξισώσεων.  2. Η αρχική φάση μιας απλής αρμονικής με βάση το σχολικό βιβλίο παίρνει τιμές:  0≤φο<2π rad. 3. Για να προσδιορίσουμε την αρχική φάση πρέπει να γνωρίζουμε σε κάποια χρονική στιγμή (συνήθως τη στιγμή t=0) την κατάσταση που βρίσκεται ο ταλαντωτής (δηλαδή, τις αλγεβρικές τιμές τουλάχιστον δύο μεγεθών: ταχύτητα, θέση, επιτάχυνση). Απλές ασκήσεις εφαρμογής των παραπάνω. 1. Στις παρακάτω περιπτώσεις να βρεθεί η αρχική φάση της ταλάν...

Κεντρομόλος δύναμη, φυγόκεντρος δύναμη και μπογιά: Τέχνη.

Κεντρομόλος δύναμη: Όταν ένα σώμα εκτελεί κυκλική κίνηση, δηλαδή περιστρέφεται διαγράφοντας κύκλο γύρω από ένα σταθερό σημείο στον χώρο, τότε στο σώμα ασκείται δύναμη η οποία έχει φορά προς το κέντρο του κύκλου αυτού που διαγράφει η τροχιά του. Αυτή η δύναμη ονομάζεται κεντρομόλος. Η κεντρομόλος δύναμη είναι η συνιστώσα της συνολικής δύναμης που ασκείται στο σώμα κατά τη διεύθυνση που ορίζει κάθε στιγμή η θέση του με το κέντρο της κυκλικής τροχιάς του, έχει κατεύθυνση (φορά) προς το κέντρο αυτό και είναι κάθε χρονική στιγμή κάθετη στην ταχύτητα του σώματος. Φυγόκεντρος δύναμη: Η φυγόκεντρος δύναμη είναι φαινόμενη (ψευδής) δύναμη που «αισθάνεται» ένα σώμα το οποίο εκτελεί κυκλική κίνηση, η οποία μοιάζει να το σπρώχνει (ή να το τραβά) να φύγει από την κυκλική του τροχιά, προς τα έξω. Κάθε σώμα που κινείται σε μη επιταχυνόμενο σύστημα αναφοράς τείνει να διατηρήσει την ταχύτητα προς την κατεύθυνση που έχει κάθε στιγμή. Η εξανάγκαση ενός σώματος να κινείται κυκλικά και όχι ευθύγρ...

Θέματα πανελληνίων εξετάσεων: Ταλαντώσεις

Τα θέματα των πανελληνίων μπορείς να τα δεις κι εδώ , αλλά σ’ αυτό το αρχείο θα βρεις όλα τα θέματα από το 2001 ως το 2012 τα οποία αναφέρονται στις ταλαντώσεις, αποκλειστικά,  μηχανικές, ηλεκτρικές. Καλή δουλειά σου εύχομαι. 

Η διαίρεση με το μηδέν και μια απόδειξη ότι ο περιπτεράς της γειτονιάς σας είναι καρότο.

Ένα πρόβλημα στα μαθηματικά είναι οι πράξεις με το μηδέν και ιδιαίτερα η διαίρεση με παρονομαστή το μηδέν. Γύρω από αυτό το πρόβλημα (ή την απροσδιοριστία αν θέλεις) έχουν γραφτεί διάφορα, πολλά από τα οποία ήταν μπούρδες, περί αποδείξεως του θεού κι άλλα τέτοια. Το παρακάτω κείμενο το οποίο το άντλησα από το blog Μαθη...μαγικα σου εξηγεί το εξής: πως μπορείς να αποδείξεις το οτιδήποτε κάνοντας μια λάθος μαθηματική υπόθεση. Για δες:  «Τι είναι το μηδέν, Μπαμπά ;» «Ο αριθμός των φτερωτών ελεφάντων που στέκονται δίπλα σου.» « Οι ροζ ή οι άσπροι;»    Το μηδέν δεν πειθαρχεί σε όλους τους κανόνες των αριθμών.O Ινδός μαθηματικός  Βραχμαγκούπτα παρότι ήταν ο πρώτος που ασχολήθηκε μαζί του ενδελεχώς, ομολογουμένως δεν κατάφερε να χειριστεί την διαίρεση. Την διαίρεσή ενός αριθμού με το μηδέν.Ο μεταγενέστερος του, επίσης Ινδός μαθηματικός Μπασκάρα γνώριζε ότι όσο μικρότερος είναι ο διαιρέτης σε μια διαίρεση τόσο  μεγαλύτερο είναι το πη...